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The spiralling self-avoiding walk in a random environment 

M Nifle and H J Hilhorst 
Laboratoire de Physique T h h i q u e  et Hautes Energiest, BBtiment 211, Universitg de  
Paris-Sud, 91405 Orsay, France 

Received 12 July 1991 

Abstract. We study the spiralling self-avoiding lattice walk in a random environment. Upon 
scaling the temperature appropriately with system sire, a phase transition appears. In the 
low temperature phase the walk segments occupy a few low-energy positions, in the 
high-temperature phase they are effectively free. An analogy with the random energy model 
is pointed out. me average size of an N-step walk is shown to be asymptotically proportional 
to NIJi log N (as was known far the homogeneous lattice), with a coefficient that increases 
as the temperature is lowered. The spatial distribution of the walk segments is qualitatively 
different above and below the critical temperature. The model also allows for a spin glass 
interpretation, and as such helps to clanfy the connection between the concepts of frustra- 
tion and the chaoticity oi the pair correlation both above and beiow the criticai point. 

1. Introduction 

The study of spiralling self-avoiding walks (SAWS) on a homogeneous lattice was 
initiated by Privman [ 11 in 1983. Such a walk, besides being self-avoiding, is subject 
to the constraint that, when traversed in a given sense, each step can only he either in 
the same direction as its predecessor, or rotated by +71/2 with respect to it. A typical 
spiralling SAW is shown in figure l (a ) .  It consists of both an outward and an inward 
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I 
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Figure 1. Two examples of N-step spiralling self-avoiding walks on a square lattice. 
( a )  Typically, a spiralling SAW consists of an outward and an inward spiralling pan. The 
two pans are statistically equivalent. ( b )  An outward spiralling SAW. Only this 
subclass of spirals is studied here. The dashed lines indicate a sector of nI4. 
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spiralling part. Since statistically these two parts are identical [2], it suffices to study 
only the class of outward spirals, of which a typical example is shown in figure l (b) .  

Two of the questions asked for a spiral SAW are the same ones as for an ordinary 

(i) what is the total number Z. of N-step walks? 
(ii) what is the root-mean-square end-to-end distance, ( R k ) ’ / 2 ,  of an N-step walk? 
Analytic results for spiralling SAWS on a homogeneous square lattice were first 

obtained [2,31 in 1984, and extended in various ways by several authors [4]. It was 
shown [2] in particular that for the class of outward spirals on a square lattice 

e x p ( 7 i m )  ( N + W )  (1 . la)  

(R’,)’l’=ffi v-’N’/’  log N (N-+m). ( I . l b )  

In this work we shall study spiralling SAWS in a random medium: We sha!! ask 
how, as a function of temperature, the properties (1.1) of the spiralling walk are affected 
by the disorder. 

On a lattice one introduces disorder by associating a random energy value with 
each link between neighbouring lattice points. The energy of a walk then is the sum 
of the energies of the links through which it passes. It is known, for example from 
studies [5,6] of the directed self-avoiding walk, that disorder creates a tendency for 
the walk to extend in space: it tries to settle in Low-energy regions, even though these 
are farther away from its origin. 

On a random lattice the walk’s properties become temperature dependent. In 
particular, in certain cases a transition may appear from a low temperature phase, 
where the walk is localized in a few low-energy regions (‘valleys’), to a high-temperature 
phase where its large-scale behaviour is qualitatively the same as on a homogeneous 
lattice. The spiralling SAW studied in this paper, just like the directed walk in 1 + 1 
dimensions, is always in its low-temperature phase if one uses the standard temperature 
variable. We shall use, however, a temperature rescaled with system size, and as a 
consequence a phase transition appears. 

The plan of the paper is as follows. In sections 2 and 3 we define the model and 
give expressions for its main properties in terms of the rescaled variables. In section 
4 we characterize the phase transition and point out an approximate analogy between 
our model and the random energy model [7]. In section 5 we define a spin system 
equivalent to the spiralling SAW. We study the correlation between two spins and find 
that it varies chaotically with temperature. It is shown that frustration is at the origin 
of this chaoticity, just as it is in standard spin glass models [SI. The chaoticity of the 
pair correlation is characterized by an explicit expression for its density of zeros on 
!he !empera!ure axis. !n secrinn 6 we show !he effec! of randomness nn the size of the 
SAW and comment upon the relative importance of thermal and of sample-to-sample 
size fluctuations. Section 7 contains a summary and perspectives, and may be read 
independently. 

M Nijle and H J Hilhorst 

SAW: 

z I -3/Zv-lj,-112 
N - 2  

2. Simplified model of a spiral walk. Partition function and thermal averages 

We shall describe the spiral walk by a simplified model which retains all the basic 
features. In a sector of n / 4  of a square lattice (see figure 2)  a number of vertical 
segments of integer heights are placed at integer positions, such that the sum of all 
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x 

Figure 2. A sector of -14 filled with vertical segments of a total length N. 

segment heights is equal to N. The number of segments is not fixed. We identify the 
model of figure 2 with the sector of the spiralling walk between the dashed lines in 
figure l (b) .  The idea behind this is that the dynamical variables of the full spiral walk 
(figure l ( b ) )  may be divided into two weakly coupled subsets, namely the position of 
the horizontal segments, and those of the vertical segments. The partition function of 
the full model will therefore be essentially the square of the partition function of the 
simplified model. One may verify this via a direct calculation following the method 
of [2]. In this work we shall content ourselves to show that quantities such as the size 
of the walk have, in the zero disorder limit, the same expression as found for the full 
model. 

In order to study the model analytically we introduce occupation numbers n, for 
x = 1, 2, .  . . , such that n, = 0 and n, = 1 correspond to the absence and the presence, 
respectively, of a vertical segment on site x. The randomness of the environment will 
be expressed by a random energy associated with each bond. The only combinations 
of variables entering the model are the sums of the energies in an entire vertical 
segment. Let E~ denote the value of the sum of the x bond energies at site x. The 
Hamiltonian Z then is 

m 

We shall take the zX to be Gaussian distributed with mean zero and root mean square 
deviation J h ,  where J sets the energy scale. It will also be useful to work with 
normalized dimensionless random variables U, defined by 

whose probability law is 

In the limit J + O  one recovers the homogeneous lattice 
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The total number of bonds, N, and of segments, L, are given by 
m 

N =  xn, 
x=I 

m 

L =  n,. 
x=, 

( 2 . 4 a )  

( 2 . 4 6 )  

Let the system size R be defined as the position of the last segment. The expression 
for R in terms o f  the n, then is 

m m 

Rather than calculating at fixed N, we shall introduce a chemical potential p and 
calculate the grand-canonical partition function 

m 

= n [l+exp(-pJ\lj;u,+ppx)] (2 .6)  
I=, 

where p denotes the inverse temperature. Quantities of interest are the averages and 
fluctuations of the n, and N, L, R and R. From (2 .6)  one finds directly 

1 - 1 a l o g z  
( n x ) =  

pJ& dux l+exp(-ppx+pJ&u,) ( 2 . 7 )  

where (. . .) denotes the grand-canonical average. Equations (2.1), (2 .4)  and ( 2 . 7 )  allow 

it suffices to note that in the grand-canonical ensemble the occupation numbers n, are 
independent variables, and hence that 

(nxnx,) = (nx)(nx,) for all x # x'. (2 .8)  
Therefore ( R )  is given by (2 .5)  but with all occupation numbers replaced by their 
averages. We still note the relation 

one to wrir;!e down immediate!y expressions for (ej ( N )  and (L,): In order to find ( R ) ,  

m 

(N' ) - (N) '  = 1 X 2 M i  -(n,)). ( 2 . 9 )  

All the thermal averages calculated above depend on the disorder, that is, on the 
set { u x ]  of random parameters. In  the next section we shall consider averages over the 
d i s o r d e I. 

I = I  

3. Thermodynamic properties 

3.1. Rescaling of temperature. The averages 'iij7 and a 
We shall let an overbar.. . denote the average over the random energies. The disorder 
averaged mean number of bonds is a function of p and g. By inverting this relation 
one obtains p as a function of 0 and m. In what follows we shall determine the 
relation between p ,  p, and explicitly in the limit of large m, and from then on 
use m rather than p as a control parameter. 

- 
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From (2.4a) and (2.7) one has 

One sees that the thermodynamic limit m- m occurs when ~ 7 0 .  It will appear that 
in this limit the spiral self-avoiding walk problem is non-trivial if we scale the inverse 
temperature p with I.L according to 

b 
m 

p=--- l l  (3.2) 

where b and m are positive constants that will acquire an individual meaning below. 
If in equation (3.1) one changes the summation variable x into 

(3.3) w 2  
' j' .- 
"=-r 

one obtains 

where the function @, analysed in appendix A, is defined by 

(3.4) 

To errive at the secnnd !ine n f  (?A) XY have used that fnr ;Ltn the va!nes Gfj? bccc-e 
dense. 

diverges proportional to p-4, with a coefficient that 
depends on b l m .  If inversely one t a k e s m r a t h e r  than /L as the independent parameter, 
one can write 

;L=-mm-'/4 (3.6) 
with a coefficient m that also depends on b/m, that is, m becomes a function of b. 
From (3.6) and (3.4) one finds that m(b) is the solution of 

Equation (3.4) shows that 

m 4  

Equations (3.6) and (3.2) lead to 
p = bm-'l4 

(3.7) 

so that one sees that b is the rescaled inverse temperature. The main properties of the 
function m(b) are derived in  appendix A. I t  is shown in particular that m decreases 
monotonously from m to m(m) = (2)""J when b goes from 0 to m. 

From (2.4) and (3.4) one sees that the expression for the disorder average of the 
mean number of segments, m, will differ from (3.4) by a factor x = J 2 y / p 2  in the 
integrand. Hence we have 
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Similarly, we get the disorder average of the thermal fluctuations of N from (2.9). 
As this differs from by a factor x2, one easily obtains its asymptotic behaviour 

(3.10) 

Since (N) is of order l /w4,  the distribution of the number of bonds is sharply peaked. 

3.2. Thermodynamics 

Having established how to scale the temperature and the chemical potential, we now 
complete our study of the thermodynamics. For the average of the grand potential fl 
we have, in the notation of (3.4) and ( 3 4 ,  

n = -p- ’  

(3.11) 

Using the method of appendix A and introducing the dimensionless variable a = m/ bJ2 
one can transform this into 

(3.12) 

The series in the above expression converges for all positive a, and hence i=l is analytic 
at all temperatures. Whereas this would seem to indicate the absence of a critical 
temperature, we shall see in fact in the next section, when studying the density 
distribution of the walk segments, that the system does undergo a phase transition. 

One may check, by comparing (3.12) with (3.4) and (A.2), that m= -(Jd/Jp),, 
as it should be. Similarly, one may obtain from the expression (3.12) the average of 
the energy E = (X )  = Jafl/aJ as 

(3.13) 

One sees that both d and E are asymptotically proportional to m’’4. From (3.13) 
one finds, by taking the limit b + m, the average of the ground state energy E,, , 

E,, = - ($)3’4 m3’4J (3.14) 

where we used (3.6) and the fact that m(m) = (i)1’4J. 
The entropy is obtained from (3.4), (A3), (3.12) and (3.13) 

s= ( E  -a - p 0) 
=-[-a+log*+ J 2  n2 c - 

2p2 3 

It is strictly zero in the zero temperature limit, where b + m and hence a + 0,  

(3.15) 

3.3. The high temperature limit 

I n  the limit b +  0 the disorder should no longer have any effect and we should recover 
known results [2]. With the aid of the asymptotic behaviour of the function “ ( 2 )  found 
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in appendix A (equation (A4a)), and using (3.2), one obtains from (3.4) after taking 
the limit b+O 

(3.16) 

This limit (b  + 0) is also the limit of vanishing disorder as one can check by using 
(3.1) in the limit J+O. 

This asympotic expression for m, and the expression for that one can find 
similarly, can be shown to be identical to those of Blote and Hilhorst [2], in whose 
notation 4N, 2L, and E play the role of our ( N ) ,  ( L )  and -pp, respectively. This 
observation establishes the equivalence, at least for these global features, of the models 
of figure l (b)  and figure 2. Comparison of (3.6) and (3.16) shows that in the limit 
b + 0 a crossover takes place in the relation between /L and m. 
3.4. The zero temperature limit 

In the zero temperature (b  + a) limit the inner integrand in (3.5) is equal to unity 
if U(-&= - m ( w ) J - ' m - 1 ' 4 f i  and to zero otherwise. The interpretation is that at 
zero temperature, at a distance x from the origin, all levels up to the local 'Fermi level' 

variables with the aid of (3.6) and (2.2) we see that the Fermi level at site x is 

- _  

-m(m)J"'2Jj; are fi!!ed, and a!! others are empty: Transforming hacktn the original 

E F , ~  = F (3.17) 

i.e. an energy /L per bond. 
Evaluation of (3.5) in the zero temperature limit gives 

(3.18) 

in agreement with the altemative calculation of appendix A, equation (A4c). Hence 
eq. (3.5) becomes 

(3.19) 

In the following sections we shall set I = 1 in order to simplify the notation 

4. Phase transition and segment density 

4.1. Spatial density of the spiral segments 

Even though the N dependence of the size of the spiral at high and at low temperature 
is the same, we shall see that the system undergoes a phase transition at a critical 
temperature b = b,. In order to show this, we calculate the disorder average of the 
occupation probability (nJ. Scaling the spatial coordinate according to 

x = rm"2 (4.1) 

and setting J = 1, the quantity to calculate becomes 

1 m du  
m = j - m z g e  l + e x p ( b m ( b ) r + b & u )  
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For fixed b evaluation is possible for asymptotically large r (see appendix B). The 
result is that in the large-r limit 

where 

and 

Since m i l  

K ( b ) =  b m ( b ) - f b 2  if m ( b ) >  b 

K ( b )  = : m 2 ( b )  if m ( b ) <  b 

C,(  b )  =- 7r ,,sec( T?), 

b 

(4 .3a )  

(4 .36 )  

(4 .4a)  

(4 .4b)  

(4 .4c)  

ndicate a decreasing function of b, the conditions n - m d  m(1 
a low-temperature ( b >  b,) and a high-temperature ( b  c 

asymptotic segment densities. The inverse critical temperature b, is the solution of 

se, respectively. 
Hence (4.4) show that there is a phase transition between two phases of different 

m ( b , ) = b , .  (4 .5)  

We find from (4 .5) ,  (3.7) and (A.4b) ,  upon restoring J, that it is given by 

b,J = @ l f 4 ( 1 )  = 2 I f 4 .  (4.6) 
The inverse decay length K ( b )  is a decreasing function of b, bounded by the two 

~ ( 0 )  = $&= 0.907 (4 .7a )  

~ ( 0 0 ) = $ & = 0 . 4 3 3  (4.76)  

and taking the value K(b.) = f a = 0 . 7 0 7  at criticality. In view of (4.3),  for fixed large 
enough r the segment density increases when the temperature is lowered. Since the 
average total number of bonds, m, is fixed, the segment density necessarily goes 
down for smaller values of r, as can be verified explicitly. We see, therefore, that just 
as in other problems of SAW$ in a random environment, the disorder increases the size 
of the walk, even though in the present case there is no change of critical exponents, 
but only of the coefficient (see section 6). 

constants 

4.2. Higher moments of the spatial density 

We can also derive the asymptotic behaviour of all moments ( n ( r ) ) k .  They are easy to 
obtain by a calculation similar to the one of appendix B for k = I .  For each k there 
appears to be a critical temperature bk which is the solution of 

m ( b x ) =  kb, (4 .8 )  

~ 

and the asymptotic behaviour is given by -~ 
(nir))’=(n(r))’  when b < b, 

when b >  b, G 
__ e-m’lhJr/2 

Mi))‘= C d b )  

(4.90) 

(4 .9b)  
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where 

(4.10) 
~ 

The critical pointb,smaller  as k goes up. In  the low-temperature region ( n ( r ) ) k  is 
much larger than ( i ~ ( r ) ) ~ ,  and in the high-temperature region they are equal to leading 
order. This recalls similar results for the moments of the partition function of spin-glass 
modeis i i le ihe Sinerringion-Grkpairick modei [ S j  or the random energy modei (REM) 
[71. The analogy with the REM will be discussed further in subsection 4.4. 

4.3. Localization of the segments below the critical temperature 

A different analysis, again in the limit of large r, allows us to characterize the phase 
transition by means of an order parameter. Equation (4.2) shows that at large r, hence 
large x, a site x with an energy U is occupied by a segment of the walk with a probability 
close to 1 when U < - m ( b ) h ,  and with a probability close to 0 when U > - m(b)&. 
When the temperature decreases, the energy level -m(b)& goes up, and the number 
of sites almost certainly occupied will increase. Hence the walk will become more and 
more trapped at these low energy sites. We shall let 'Y , (b)  denote the fraction of all 
segments at a distance - r  from the origin that are trapped at energies less than 
- m ( b ) h .  Hence 

where ( n ( r ) )  is given by (2.7) and the rescaling (4.1). The denominator in (4.11) is 
equal to (4.2) and (4.3), in the limit of large r. The numerator is easily evaluated by 
the same methods. Upon defining 

" ( b )  = lim ' P r ( b )  (4.12) 
r-m 

one finds 

" ( b )  = 0 i f b < b ,  (4.13a) 

if b > b, _, . ?rm(b) (-ilk 
= T  sin- E b k-,, k + m ( b ) / b  

(4.136) 

for the high and the low temperature phase, respectively (see ref [9], equations (3.311.2) 
and (3.31 1.9)). The low temperature phase is characterized, therefore, by a finite fraction 
of frozen segments in the large-distance limit. One easily finds that 

W ( b ) X  b - b, 
"(a)) = I .  

as b l b ,  
(4.14) 

4.4. Similarity to random energy model 

There is a qualitative similarity between the spiral SAW problem of this paper and the 
randon energy model (REM) [7]. The typical distance between two neighbouring 
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segments is m-'. Hence, for large x a segment is far away from its neighbours, and 
can choose among a large number of sites with energy values having a Gaussian 
distribution. If a segment had a fixed number of sites attributed to it, it would be 
exactly equivalent, in the limit r + m ,  to a REM.  In reality, the segments have a weak 
interaction between them, which accounts for the differences with the REM. In particular, 
in our model the entropy (3.15) in the low-temperature phase is not strictly zero as it 
is in the REM. 

therefore ask if pure states can be distinguished also in the spiral SAW model, how 
many there are, and what their energy and overlap distributions are. Similar questions 
were asked recently by MCzard [6] for the case of the directed walk, but we shall not 
address these issues here. 

M Nifle and H J Hilhorst 
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5. Chaotic correlation functions in the frozen phase 

5.1. Spin glass interpretation of the model 

The most interesting correlation effects appear if instead of the SAW interpretation of 
the Hamiltonian (2.1) we adopt a spin glass picture. In this interpretation there is a 
magnetic spin on each site of the dual lattice. The vertical segments are part not of a 
single spiral as in figure 2, but each is part of a different rectangular closed contour, 
the set of contours being completely nested, as shown in figure 3. We imagine that 
whenever a contour is put in place or taken away, the region of spins inside it is 
completely reversed with respect to the region outside it. Hence the spins in an area 
between two successive contours are fully correlated, and our interest is in correlations 
between spins separated by a distance larger than the average distance between the 
contours. 

Figure 3. A set of nested contours on a lattice of magnelic spins 

Two Ising spins sx, and sx, (with x-coordinates x , + i  and x2+f ,  respectively, see 
figure 3) will therefore have a correlation 

where we have indicated explicitly the dependence of the thermal averages on the 
inverse temperature b. The product s;,s:> is the reference value in the state without 
any contour, and we shall set it equal to unity for convenience. 

(s I ,  j = ~ ~ ~ ~ ~ ~ - i ~ ~ ~ , + , ~ , . . i "  .2)h I ( 5 , : )  
x1 h X I  1 2  
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5.2. Correlation length and chaotic temperature dependence 

The correlation function (5.1) can also be written as 

295 

We may express this as a product of two factors of which one will give the sign of the 
correlation and the other will contain the correlation length 

(5.3) N.(bl e-ix,-x,)/5.(b) (%,&J = (-1) 

in which 

5 
(X2-X1)lSu(b)+ i d " d b )  = lim Z log [1  -2(nJb+i,,l (5.4) 

S!O y=Li+! 

where the index U is a reminder of the dependence on the disorder variables. We shall 
discuss successively the quantities tu and Nu.  For xI and x2 both of order m/'r and 
x2-x, large, c ; ' (b )  is self-averaging and approaches the inverse correlation length, 

This quantity still depends on the distance r from the origin, and is therefore actually 
a local correlation length. Since two spins between the same pair of successive contours 
are completely correlated, it makes sense to define a correlation length E ( b )  on the 
length scale of the typical contour distance, 

- _  
E ( b )  =2(n) <-'(b) (5.6) 

where the factor 2 is for later convenience. The integral in ( 5 . 5 )  can be evaluated, in 
the limit of large r, by the method of appendix A. Again the regimes b > b, and b < b, 
have to be distinguished. The result is that, for large r, E ( b )  tends to a constant value 

3 ( b )  = 1 i f b < b ,  (5.7a) 

(5.76) 

One easily verifies that the correlation length E ( b )  is continuous at b = b,,  and that it 
diverges as E ( b ) -  b in the zero temperature ( b + m )  limit. The result (5.7a), which 
refers to the high-temperature phase, is the same as would result ifj at a given regmen! 
density ( n ( r ) ) b ,  all segments would move freely and randomly along the x axis. The 
increase of the correlation length (5 .7b)  below the critical temperature has the same 
cause as the appearence in section 4 of a non-zero order parameter: below criticality, 
segments gradually begin to freeze into a small number of fixed, randomly located, 
positions. A frozen segment at a site y corresponds to ( n , )  = 1, which in view of (5.1) 
contributes a factor -1 to the correlation, but does not contribute to the decay of its 
absolute value. 

We turn now to the discussion of N ( b )  in (5.4). This quantity is equal to the number 
of sites y between xI and x2 such that ( n , ) > i ,  or, equivalently, U" < -m(b)&. Since 
for r + m  (and y of order m'"r) the average density ( n , )  can only take the values 0 
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or I ,  the quantity N(b)  represents the number of frozen segments on the interval 
between x, and x2. Its average value is 

As the temperature is lowered, the set of sites occupied by a frozen segment can only 
increase. Therefore dN(b)/db represents the density of sign changes on the temperature 
axis of the correlation function (sx,sxJb. It makes again sense to express x2-x, as 
a multiple of the intersegment distance via x2 -x ,  = X(n(rJJ-‘. Using (5.8) and 
the explicit expressions (4.3) for (no) we obtain for the average density of sign 
changes 

b >  b, (5.9a) 

(5.96) 

Hence in the large-r limit, the density of sign changes for fixed spin separation tends 
to infinity in the low temperature phase (5.9a) and to zero in the high-temperature 
phase (5.9b). With increasing spin separation X the density increases without bound. 
Hence for a given temperature change Ab, the correlation function will undergo an 
arbitrarily large number of sign changes, which is the defining characteristic of chaotic 
temperature dependence [ 101. 

The relation between disorder, frustration and chaotically temperature dependent 
correlations is now clear in this model. The Hamiltonian (2.1) is frustrated because, 
at a fixed number of bonds 0, one cannot minimize each of its terms separately, 
and the minimum total free energy is the result of a compromise. Furthermore, imposing 
the constraint of a f i x e d m i n  section 3 has rendered the chemical potential temperature 
dependent: p = - ~ ( b ) m - ” ~ .  We now see that in both equations (5.9) there is a 
factor Idm(b)/dbl present, so that the frustration is directly responsible for the chaotic 
correlations. Furthermore the relation between the chaotic behaviour and the phase 
transition appears. 

Both above and below criticality the density of zeros increases indefinitely with the 
spin separation X. In the high-temperature phase, however, the correlation decays 
rapidly for X > 1, so that on those lengths scales the thermal effects are more important 
than the frustration. In the low-temperature phase, the correlation decays only when 
X >  E(b), with E(b)  going to infinity as  temperature goes to zero. Hence there is an 
increasingly large spatial scale on which the chaoticity becomes important and will 
dominate physical properties such as relaxation times. 

6. End-to-end distance of the SAW 

The question we are interested in is to determine the effect of the disorder on the size 
of the spiralling SAW or, in our description in terms of segments, on the position R of 
the last segment. The same question has been answered for the directed polymer whose 
typical extension was found to increase due to the disorder. The result here is that the 
random medium does not modify the N dependence that we have given in (1.lb) for 
the homogeneous case, but only introduces a temperature dependent coefficient. 
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We obtain exactly the quantity m. Compared to (1.1 b) ,  the disorder has increased 
the size of the spiralling walk in agreement with our conclusion of section 4. We give 
a few comments about both thermal and sample-to-sample fluctuations of R at the 
end of this section. 

From (2.5) and (2.8), one has for the average of the pth moment of the end-to-end 
distance 

where the exponent p will be equal to one or two. We scale the inverse temperature 
according to (3.8) and change the position variables x and y into 

P2 r = T x  
"* 

2 

Y .  =E 
A, 

(6.2a) 

(6.26) 

Here A +  is a scale factor yet to be determined, but we shall anticipate that it diverges 
as p decreases to zero. 

In the small-p limit (6.1) becomes 

(Rp)= (%)' Im d r i p  (no) exp [ -> sf dr'(n(A,,r')) ] (6.3) 
P o  

~ 

where we have exponential 1 -T;"i=e-("'*+'')) . W e introduce . the new variable of 
integration 

s = ",- (n(A+r'))  dr' 
P2 

and we get 

(R')= (%) ' jmdsrp(s)  e-' 
P O  

we use (4.3) in (6.4) and find in the large -A, limit 

The scale A, is determined by  the condition that the main contribution to the integral 
(6 .5)  come from r' an: j values 

A,. = log I&1 (6.7) 

i e ~ a i i i  of order ciie as p+ 0. ?hi; gives 

and to leading order r is given by 

The final result, upon integrating, is 
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If one takes m = m4/fi4,  one gets in the p = 1 case 

(6.10) 
. .  , .  

The homogeneous case may be obtained upon taking the J = 0 limit of (2.7) in 
(6.1). Then one takes ( N ) =  .rr2/12/3'w2 and finds again (1.lb). This is again the result 
for the full spiral (figure lb )  after the substitution indicatedinsection 3.3. 

This calculation allows us to find an expression for (R2)-m2. We need the 
following orders of ( R P )  whose leading order is given by (6.9). This can be calculated 
immediately upon using the expansion of r ( s )  

(6.11) 

where (I = 1 when b > b, and (I = 0 otherwise. We find that the first orders vanish and 
get 

(6.12) 

where C is Euler's constant, and K(b) is given by (4.4) in both temperature regions. 
The quantity (6;!2) therefore scales as pq rrpon writing 

- _ _ _ -  
(R') -mz = ((R') - (R)')  + ((R)' -mz) (6.13) 

one sees that it is the sum of the thermal fluctuations (averaged over all samples), and 
thesample-to-sample fluctuations. Hence either of these is at most of order m. Since 
(R') is of order m log' m, both the thermal and the sample-to-sample distributions 
of the end-to-end distance are sharply peaked. We suspect that in the low-temperature 
phase the themal as well as the sample-to-sample fluctuations are O(m), and that in 
the high temperature phase the sample-to-sample fluctuations are negligible, a s m  + m, 
compared to the thermal fluctuations. 

I. Summary and perspectives 

The spiralling self-avoiding walk on  a square lattice with independent energy variables 
on each link may be studied through a simplified model. This model is expressed in 
terms of occupation variables of the lattice by  the segments of the spiral. 

The system exhibits a phase transition after rescaling the temperature and the 
distance with the mean number of steps of the walk, m, as and 0''' 
respectively. The occupation numbers of the simplified model have a Fermi distribution. 
This defines a Fermi level up to which all energy levels are filled at zero temperature. 
An order parameter characterizing the phase transition is defined in section 4. It gives 
the fraction of all segments, far from the origin, that are trapped at low energy levels. 
In the low temperature phase the walk is localized in these low energy regions. In the 
high temperature phase the walk behaves qualitatively as on a homogeneous lattice. 

Furthermore, one can cofis!rxc! a spin g!ass picture where the walk defines a set 
of nested contours on a lattice of king spins. The correlation between two spins 
undergoes random sign changes on  the temperature axis. In section 5 one sees that 
the density of sign changes diverges linearly with the distance between the two spins. 
This chaotic behaviour is present above as well as below the critical temperature. It 
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implies that a small temperature change necessitates important rearrangements of the 
walk segments. Above criticality such rearrangements will be physically brought about 
by thermal agitation. Below criticality, the correlation length (although never infinite 
in the present model) increases without bound as the temperature goes down. On a 
spatial scale less than the correlation length the system is frozen, and will not be able 
to carry out the rearrangements required by a temperature change. This will manifest 
itself experimentally in extremely slow relaxation, aging, etc. 

The end-to-end distance of the set of segments was shown to be proportional to 
(N)"210g m, as in the homogeneous case. However, there is a temperature dependent 
prefactor which becomes larger as the temperature is lowered. Hence the disorder 
increases the size of the walk, just as it does for a directed walk. 

One of the remaining question is to develop the analogy, pointed out in section 
4.4, of our model with the random energy model. The REM has a low temperature 

distinguished also in the spiral SAW model, ask how many there are, and what their 
energy and overlap distributions are. Similar questions were investigated recently by 
M6zard [6] for the case of the directed walk. 

- 

-boon .&th man-r rnnr:rti-n n,.r~ .+-+PC nnn mgv th-mfnra nclr  ;f n i i r ~  c t n t r c  r i n  hp 
p".'L"C "l,.. ..'Y.LJ """"."L...6 yu.* >LU....,. -.a., L"UJ LLLII..."." '.OR .L YYL' 1.11"" -".. "1 
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Appendix A. The functions @(z) and m(b) 

We analyse the function @(z) defined by (3.5). Upon replacing the integration variable 
U by s- y +  u 4 ,  interchanging the two integrations, and setting y -  t 2  one obtains 

where, in the second step, we used [9], equation 3.472.2. By differentiating the last 
line of (Al) one shows that 

W(r)<O (A2a) 

W(Z)>O. (A2b) 

The first ofthe integrals in (Al)  may be evaluated with the aid of [SI. equations 3.311.1 
and 3.411.3. The second one can be transformed with the aid of [9], equations 3.311.2 
and 3.411.8. As a result one obtains 
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The series converge for all z 
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0. It follows in particular that 

T I 2  
@ ( 2 ) = -  as 2-0 (A4a) 12z2 

@ ( 1 ) = 2  (A4b) 

@(CO)=$. (A4c) 
%e ium now io the Funciion mibj,  which is the soiution of ( X i ) .  By combining this 
equation with (A4n) and (A4c) one readily finds 

71 
m(b)=- as b+O 

2 a b  

m(m) = (;)'/'J. (A5b) 
One may convince oneself graphically that m(b) is monotonously decreasing. To show 
this analytically, we differentiate (3.7) with respect to b, which gives 

This shows that dm/db cannot vanish for O <  b < m  and hence, in view of (A2a), is 
of a single sign. But this sign can be read off from (ASa), and therefore 

m'(b) < O  (A71 
for all b. 

Appendix B 

In this appendix, we obtain the occupation probability (n( r)) averaged on the disorder, 
in the large-r limit, 

The integrand in (AI) is a Gaussian multiplied by a Fermi distribution. For large r it 
is a function with a sharp peak. The energy at which the peak is located, called U*, 
is negative. We shall see how it depends on the temperature (through b). We will find 
two results for (n(r)) and two corresponding regimes of temperature. 

- 
After the transformation U =  mr+& U in (BI),  one finds 

One can expand the exponential e-"2f2r in the large-r limit. For reasons of conver- 
gence, one easily sees that this expansion is allowed if and only if 

m ( b ) < b  (B3) 

that is, in a regime of low temperature. In that case, the result is to leading order 
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where the integral may be evaluated with [91, equation 3.311.9 and gives ( 4 . 4 ~ ) .  Hence, 
for m ( b ) < b ,  the integrand in ( B l )  has a peak at 

u * ( b ) = - m ( b ) &  (B5) 
with a width Au*(b)  which is of order l/&. 

Let us now consider the remaining high temperature regime, 

m ( b ) z  b. (B6) 
We expand the integrand in ( B . l )  in powers of exp[-bmr - b&u] and get leading order 

Here we have U* = b&, and Au*(b) is of order one. Each of the results (84) and (B7) 
is the iirst term of an asymptotic expansion that can be compieteiy determined if 
necessary. 
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